Palaeogenomics of pterosaurs and the evolution of small genome size in flying vertebrates.
نویسندگان
چکیده
The two living groups of flying vertebrates, birds and bats, both have constricted genome sizes compared with their close relatives. But nothing is known about the genomic characteristics of pterosaurs, which took to the air over 70 Myr before birds and were the first group of vertebrates to evolve powered flight. Here, we estimate genome size for four species of pterosaurs and seven species of basal archosauromorphs using a Bayesian comparative approach. Our results suggest that small genomes commonly associated with flight in bats and birds also evolved in pterosaurs, and that the rate of genome-size evolution is proportional to genome size within amniotes, with the fastest rates occurring in lineages with the largest genomes. We examine the role that drift may have played in the evolution of genome size within tetrapods by testing for correlated evolution between genome size and body size, but find no support for this hypothesis. By contrast, we find evidence suggesting that a combination of adaptation and phylogenetic inertia best explains the correlated evolution of flight and genome-size contraction. These results suggest that small genome/cell size evolved prior to or concurrently with flight in pterosaurs. We predict that, similar to the pattern seen in theropod dinosaurs, genome-size contraction preceded flight in pterosaurs and bats.
منابع مشابه
Evolution of archosaurian body plans: skeletal adaptations of an air-sac-based breathing apparatus in birds and other archosaurs.
Living birds represent the only extant sauropsid group in which pulmonary air sacs pneumatize the postcranial skeleton. Notable in this regard is an extraordinary degree of variability, ranging from species that are completely apneumatic to those characterized by air within the entire postcranial skeleton. Although numerous factors (e.g., body size) have been linked with "relative" pneumaticity...
متن کاملCompetition and constraint drove Cope's rule in the evolution of giant flying reptiles
The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope's rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples of Cope's rule operating on exten...
متن کاملPhylogenetic Analysis of Three Long Non-coding RNA Genes: AK082072, AK043754 and AK082467
Now, it is clear that protein is just one of the most functional products produced by the eukaryotic genome. Indeed, a major part of the human genome is transcribed to non-coding sequences than to the coding sequence of the protein. In this study, we selected three long non-coding RNAs namely AK082072, AK043754 and AK082467 which show brain expression and local region conservation among vertebr...
متن کاملThe Earliest Pterodactyloid and the Origin of the Group
The pterosaurs were a diverse group of Mesozoic flying reptiles that underwent a body plan reorganization, adaptive radiation, and replacement of earlier forms midway through their long history, resulting in the origin of the Pterodactyloidea, a highly specialized clade containing the largest flying organisms. The sudden appearance and large suite of morphological features of this group were su...
متن کاملVariation of osteocyte lacunae size within the tetrapod skeleton: implications for palaeogenomics.
Recent studies have emphasized the ability to reconstruct genome sizes (C-values) of extinct organisms such as dinosaurs, using correlations between known genome sizes and bone cell (osteocyte lacunae) volumes. Because of the established positive relationship between cell size and genome size in extant vertebrates, osteocyte lacunae volume is a viable proxy for reconstructing C-values in the ab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biology letters
دوره 5 1 شماره
صفحات -
تاریخ انتشار 2009